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Are Bound States of Color-Excited Leptons 
Responsible for Anomalous e+e - Production 
in Heavy Ion Collisions? 
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A model for the anomalous e§ - production in heavy ion collisions is proposed. 
The model is based on the hypothesis that e§ - production derives from the 
decay of "leptopions," pionlike bound states of colored excitations of e + and 
e-. Order-of-magnitude estimates for the mass scale of the radial excitations 
and lifetime of the leptopion obtained by extrapolation from the case of the 
ordinary pion are in accordance with data. The model for leptopion production 
is based on the electromagnetic anomaly term. In the classical treatment of the 
nucleus-nucleus collision the leptopion production amplitude is essentially the 
Fourier transform of the scalar product of the electric field of the stationary 
target nucleus and the magnetic field of the colliding nucleus. The production 
amplitude becomes singular for certain values of the kinematical variables and 
in singularity the velocity of the leptopion is a definite function of the production 
angle measured with respect to the direction of the collision velocity. Due to 
the weak dependence of the velocity of the production angle in the forward 
direction the leptopions are apparently produced at rest in center-of-mass coor- 
dinates in accordance with the data. The observed peak of e+e - production 
amplitude (in fact two peaks in some cases) is explained as a quantum diffraction 
effect resulting from the finite size of the colliding nuclei, when the collision 
velocity exceeds the velocity needed to overcome the Coulomb barrier. The 
production amplitude oscillates as a function of collision velocity and the period 
of oscillation is in accordance with the width of the observed velocity peak. In 
principle, several diffraction peaks are possible for elastic collisions in a plane, 
but the effects of strong interactions are expected to lead to the disappearence 
of the peaks at velocities larger than that needed to overcome the Coulomb 
barrier. An explanation for the unobservability of lepton color via strong interac- 
tions is proposed. 

1. H E A V Y - I O N  C O L L I S I O N  E X P E R I M E N T S  
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Clemente et a t ,  1984; Cowan et al., 1985, 1986; Tsertos et al., 1985, 1987) 
have yielded a rather puzzling set of results. The expectation was that in 
heavy ion collisions in which the combined charge of the two colliding ions 
exceeds 173, a composite nucleus with Z > Zcr would form and the probabil- 
ity for spontaneous positron emission would become appreciable. 

Indeed, narrow peaks of widths of roughly 50-70 keV and energies 
about 350 + 50 keV were observed in the positron spectra, but it turned out 
that the position of the peaks seems to be a constant function of Z rather 
than vary as Z 2~ as expected and that peaks are generated also for Z smaller 
than the critical Z. The collision energies at which peaks occur lie in the 
neighborhood of 5.7-6 MeV/nucleon. Also, it was found that positrons are 
accompanied by e emission. Data are consistent with the assumption that 
some structure at rest in the center-of-mass system is formed and decays 
subsequently to a e§ - pair. 

Various theoretical explanations for these peaks have been suggested 
(Chodos, 1987; Kraus and Zeller, 1986). For example, lines might be created 
by pair conversion in the presence of heavy nuclei. In nuclear physics 
explanations the lines are due to some nuclear transition that occurs in the 
compound nucleus formed in the collision or in the fragments formed. The 
Z independence of the peaks seems, however, to exclude both atomic and 
nuclear physics explanations (Pitk~inen, 1981, 1983, 1985, 1986a, b, 1988). 
Elementary particle physics explanations (Chodos, 1987; Kraus and Zeller, 
1986) seem to be excluded already by the fact that several peaks have been 
observed, one at 1.062 MeV and possibly several peaks in the range 1.6- 
1.8 MeV. 

Thus, it seems that the structures produced might be composite, perhaps 
resonances in the e§ - system. The difficulty of this explanation is that 
conventional QED seems to offer no natural explanation for the strong 
force needed to explain the energy scale of the states. One idea is that the 
strong electromagnetic fields create a new phase of QED (Chodos, 1987) 
and that the resonances are analogous to pseudoscalar mesons appearing 
as resonances in strongly interacting systems. 

The explanation proposed in this paper is based on the following 
hypotheses motivated by topological geometrodynamics (Pitk/inen, 1981, 
1983, 1985, 1986a, b; 1988): 

(a) Ordinary leptons are nonpointlike particles and can have colored 
excitations. 

(b) e§ - structures are "leptopions," color-confined states formed 
from the colored excitations of e § and e-. 

In the following I shall: 
(a) Demonstrate that one can qualitatively understand the masses and 

lifetimes of the observed states using these hypotheses. 
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(b) Construct a model for the leptopion production treating nucleus- 
nucleus collision purely classically and assuming that leptopions are pro- 
duced through an electromagnetic anomaly term (Itzykson and Zuber, 1980) 
so that the production amplitude is essentially the Fourier transform of the 
scalar product of the electric field of the stationary target nucleus with the 
magnetic field of the colliding nucleus. This model explains why leptopions 
are apparently produced at rest in cm coordinates. This model does not, 
however, explain the peak structure observed in leptopion production. 

(c) Modify the model by taking into account the quantum diffraction 
effects resulting from the finite size of the nuclei. As a result I obtain an 
explanation for the velocity peak(s). The production amplitude is predicted 
to contain an oscillatory term above the velocities needed to overcome the 
Coulomb barrier in the case of elastic plane collisions. The effects of strong 
interactions are expected to lead to the disappearence of the oscillatory 
behavior at higher energies. 

(d) Describe briefly the topological geometro dynamics (TGD) 
approach (Pitk~inen, 1981, 1983, 1985, 1986a, b, 1988), which has provided 
the general philosophy behind the colored lepton hypothesis. 

(e) Propose a TGD-based explanation for the absence of lepton- 
hadron color interactions. 

2. ESTIMATES FOR THE LIFETIME OF THE LEPTOPION AND 
FOR THE MASSES OF THE EXCITATIONS OF LEPTOPIONS 

The assumption that leptopions are color-confined states of color octet 
fermions makes it possible to estimate the masses and lifetimes for leptopion 
states. 

A string picture of leptopions is suggested by analogy with ordinary 
pions and an estimate for the string tension is obtained by multiplying the 
hadronic string tension 1 GeV 2 by the ratio of masses for color octed lepton 
and for the u-quark and by the ratio r = 2 of Casimir operators in octet and 
triplet representations, 

TL/ TH = k (me l /  m . )  
(1) 

k = ( m e , / m ~ ) C ( 8 ) / C ( 3 )  ~ 1.7 x 10 -a 

I assume the value mu = 350 MeV for the quark mass (me1 denotes the mass 
of the colored lepton). 

An estimate for the mass of the color octet lepton is obtained by 
requiring the string tension to be such that the state with mass 1.6 MeV 
(radial excitation of the lowest-lying state in the "leptonium" picture) 
corresponds to the lowest-lying state in the daughter trajectory of the Regge 
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trajectory associated with the 1.062-MeV state, so that the mass of  this state 
should be approximate ly  given by the expression 

rn = ( m~ + n TL) 1/2 
(2) 

mo-- 1 MeV 

with n = 1. 
The resulting value of  the string tension is TL -- 1.4 MeV 2 and the value 

of  the mass of  the colored lepton is m = 0.3 MeV. The mass of  the n = 2 
state is estimated to be 1.9 MeV, to be compared  with the value 1.8 MeV 
(of  course, the situation changes if there exist additional resonances in the 
mass range 1.6-1.8 MeV). 

An estimate for the mass splitting between leptopion and " leptorho"  
( L =  0 state with parallel spins) is obtained from p-~r mass splitting by 
multiplying it with the ratio r = 2 of  the values of  the Casimir operator  in 
the octet and triplet representations and with the mass ratio me~/m~ : 

p L -  ~rL = (p - ~ ) k  (3) 

The splitting obtained is 1.2 MeV and the mass of  leptorho is predicted 
to be 2.2 MeV. 

A leptopion with a mass 1.062 MeV decays mainly into two photons 
via an anomaly  term (I tzykson and Zuber,  1980). The ratio for the lifetimes 
of  the leptopion and the pion is thus expected to be given by 

tL = t ~ / k  (4) 

and one obtains the estimate tL = 4 . 0 x  10-14sec for the lifetime of  the 
leptopion. This estimate is consistent with the experimental constraints on 
the lifetime (10-9> t r>  10 -19 sec). 

These rough estimates clearly show that the present hypothesis is in 
accordance with the existing data concerning the mass scale associated with 
the e+e - states and the lifetime of the lowest e+e - state. 

3. M O D E L  FOR T H E  P R O D U C T I O N  OF L E P T O P I O N S  
TREATING NUCLEI  AS CLASSICAL P O I N T L I K E  CHARGES 

The angular momen tum barrier makes the production of  leptomesons 
with orbital angular momentum L > 0 unprobable.  Therefore the observed 
resonances are expected to be L = 0 pseudoscalar  states. Leptopion produc- 
tion has two signatures which any realistic model should reproduce. 

(a) Data  are consistent with the assumption that states are produced 
at rest in the cm frame. 
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(b) The production probability has a peak in a narrow region of 
velocities of the colliding nucleus around the velocity needed to overcome 
the Coulomb barrier in a head-on collision. The relative width of the velocity 
peak is of order Afl l f l  ~-- 10 -2. 

In this section a model treating nuclei as pointlike charges and nucleus- 
nucleus collision purely classically is developed. This model yields predic- 
tions in close agreement with the signature (a), but fails to reproduce 
signature (b). 

The basic ingredients for the classical model of leptopion production 
are the following: 

(a) The well-known relation (Itzykson and Zuber, 1980) expressing 
the pion field as a sum of the divergence of an axial vector current and an 
electromagnetic anomaly term generalizes to the case of the leptopion as 

7T=[V "jA +(Otem/8"tr)E" B]/m~f (5) 

In the case of the pion field, f~ = 93 MeV has the order of magnitude 
of the pion mass. In the leptopion case the order of magnitude o f f  is given 
by 

f =  kf~ =0.16 MeV (6) 

The anomaly term gives rise to pion decay to two photons, so that one 
obtains an estimate for the lifetime of the leptopion. 

This relation is taken as the basis for the model describing also the 
production of leptopions in an external electromagnetic field. The idea is 
that the presence of an external electromagnetic field gives rise to a vacuum 
expectation value of the leptopion field. Vacuum expectation is obtained 
by assuming that the vacuum expectation value of the axial vector current 
vanishes, 

(vacl~rlvac} = KE" B 
(7) 

K = ae,, / (87rfm 2) 

(b) The amplitude for the production of leptopions with four- 
momentum p = (P0,/5) is an external electromagnetic field is obtained by 
substituting the expression for the vacuum expectation of the leptopion 
field into the LSZ reduction formula (Itzykson and Zuber, 1980) 

A(p)  -- f fp(x) [Z (vac[zrlvac) d4x 

fp = e'P'X/(4zrpo V)t/2 (8) 

Here V denotes the quantization volume. 
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The probability for the production of  leptopions in a phase space 
volume element d3p is obtained by multiplying with the density of  states 
factor Vd3p, 

dP = A[ U[ 2 d3 p 

A = (aem/8~rmof)Z/4"rrpo (9) 

U = I eipXE" B d4x 

Let us now specialize to the case of  a heavy ion collision. Consider 
the situation where the scattering angle of  the colliding nucleus is measured. 
Treating the collision completely classically, we can assume that collision 
occurs with a well-defined value of  the impact parameter in a fixed scattering 
plane. 

Let us choose the coordinates so that target nucleus is at rest at the 
origin of the coordinates and the colliding nucleus moves in the z direction 
in the y = 0 plane with velocity ft. The scattering angle of  the scattered 
nucleus is denoted by a, the velocity of the leptopion by v, and the direction 
angles of the leptopion velocity by (0, ~b). 

The minimum value of  the impact parameter for the Coulomb collision 
of  pointlike charges is given by 

b = b0 c o t ( a / 2 ) / 2  
(10) 

bo= 2Z1Z2aem/ MR[3 2 

where bo is the expression for the distance of  closest approach in a head-on 
collision. MR denotes the reduced mass of the nucleus-nucleus system. 

To evaluate the amplitude for leptopion production, the following 
simplifying assumptions are made. 

(a) Nuclei can be treated as pointlike charges. This assumption is well 
motivated when the impact parameter of the collision is larger than the 
critical impact parameter given by the sum of  radii of the colliding nuclei: 

bcr = R I + R  2 (11) 

For scattering angles that are sufficiently large the values of the impact 
parameter do not satisfy the above condition in the region of  the velocity 
peak. 

(b) Since the velocities are nonrelativistic (about 0.12c in the laboratory 
frame), one can treat the motion of the nuclei nonrelativistically and the 
retarded electromagnetic fields associated with the exactly known classical 
orbits can be used. The use of  classical orbits does not take into account 
the recoil effect caused by leptopion production. Since the mass ratio of  
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the leptopion to the reduced mass of the heavy nucleus system is of order 
10 -5 , the recoil effect is, however, negligible. 

(c) The model simplifies considerably when the orbit is idealized with 
a straight line with impact parameter determined from the condition express- 
ing the scattering angle in terms of the impact parameter. This approximation 
is certainly well founded for large values of the impact parameter. 

In this approximation the instanton density in the rest frame of the 
target nucleus is just the scalar product of the Coulombic electric field E 
of  the target nucleus and of the magnetic field B of the colliding nucleus 
obtained by boosting it from the Coulomb field of the nucleus at rest. 

The Fourier amplitudes of these fields with unit charge are given by 
the expressions 

E , ( k )  = 8(ko)ki/k 2 

B,(k) = 8('y( ko -  flk~) ) kje~ eik~b/[ ( k J  y )2 + k2r] 
(12) 

The Fourier component of E- B is given as a convolution of Fourier 
transforms, which reduces to a two-dimensional integral 

V(p)  = fly f dkx dky (kxpy - kyp . ) /AB 

A = (Pz -Po/f l)2+P 2+ k 2 -2kT"  PT 

B = k2T+ (po/fly) 2 (13) 

pT=(px, py) 

kT = (kx, ky) 

One can apply the calculus of residues to calculate the integral with 
respect to ky and kx. As described in the Appendix, one can express the 
integral over kx as a sum of residue terms. The integral of the resulting 
amplitude over ky can be expressed as a sum of residue contributions plus 
integrals over two cuts. 

The resulting expression for the amplitude reduces to the following 
general form: 

U = RES + CUT1 + CUT2 (14) 

The expressions for the various terms are given in the Appendix. 
Since my main interest is to show that the production amplitude indeed 

becomes singular at certain values of kinematical variables, I restrict con- 
sideration to the contribution of the first cut, which for ~- ~ [0, zr/2] is given 
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by the expression 

f T r/2 
CUT1 = sin 0 sin 4) A d~/2 

dO 

A = e-bm:"c~ 0 cos 4) + iK cos ~)/Xl 

Xl=sin2 0(sin2 4)-cos2 O)+K2-2iKsinOcos~cos4) (15) 

K = 13~/(1 - Veto COS O/fl) 

Vcm=2V/(I+v 2) 

Using the symmetries 

A(px, -py)  = -A(px, py) 
(16) 

A(-p~,, -py) = ,4(p~, py) 

of  the amplitude, one can calculate the ampli tude for other values of  4). 
CUT~ indeed gives the singular contribution to the amplitude. The 

reason is that the factor X~ 
vanishes when the conditions 

are satisfied. 

appearing in denominator  of  the cut term 

cos O=fl/Vom (17) 

sin 4) = cos 

In the forward direction this condition says that the z component  of  
the leptopion momen tum in the velocity center-of-mass coordinate system 
vanishes. In the laboratory frame this condition means that the leptopion 
moves in a certain cone defined b y  the value of  its velocity. The condition 
is possible to satisfy only above the threshold Veto >-/3. 

For K = 0 the integral reduces to the form 

If C U T  l = (COS 4) sin 4)/2) lim e -bmv~c~ 24) - c o s  2 ~ +  i(e)]  
e~0 

(18) 

One can estimate the singular part  of  the integral by replacing the 
exponent  term with its value at the pole. The remaining integrations can 
be per formed using elementary calculus [substituting t = tan(4)/2)] and one 
obtains for the singular cut contribution the approximate  expression 

CUT~ - e -bm~' ~i~162 ln (X) /2  

X=[(t+s)I/2+(1--S)I/2]/[(I+s)I/2--(1--S) 1/~] (19) 

s = sin r 
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The amplitude diverges logarithmically for ~b = 0. In addition, the singular 
contribution contains an exponential damping term. 

If this singular term indeed gives the dominant contribution to the 
leptopion production, one can draw some conclusions concerning the 
properties of the production amplitude. 

(a) Production occurs mainly in the cone cos 0 =/3/vcm : in the forward 
direction this corresponds to the vanishing of the z component of the 
leptopion momentum in the velocity center-of-mass frame. In addition, the 
production occurs mainly in the scattering plane due to the dependence of  
the production amplitude on the angle ~b (see Figure 3). Numerical calcula- 
tions and a closer examination of the production amplitude suggest that 
for all values of 0 the production is strongly restricted to the collision plane. 

Data are consistent with the production of  leptopions at rest in the 
center-of-mass frame. This would mean an additional restriction cos 0 = 0 
to the kinematical variables in the laboratory frame, so that production 
would occur only on the threshold / ) cm/ /3  = 1. 

This result need not be in contradiction with the present model. In a 
singularity the velocity of the leptopion in a given direction 0 is a definite 
function of  0 and is given in a good approximation by the expression 

v = 13/2 cos 0 (20) 

If positron and electron pairs are detected in the forward direction, the 
velocity v depends only weakly on 0. The relative width of the velocity 
peak is of  order Av/v =0.2  (Cowan et al., 1986) and this corresponds to 
an angular width A0--~ 34 deg. 

(b) Consider next the velocity dependence of the production ampli- 
tude. Substituting the expression of the impact parameter in terms of the 
collision velocity and scattering angle, we obtain the following expression 
for the exponent term in the production amplitude: 

CUT, = exp[-(Z, Z2aemm/Ma/33y) co t (a /2 )  sin 6]  In(X) (21) 

To get a grasp on the situation, consider the U-U collision. In this 
case, the values of the relevant parameters are estimated to be 

R-~9.3•  10 -~s m 

1/m~- 1.2• 10-12 m 
(22) 

/3 =0.13 

bm= 2Rrn co t (a /2 )  = 0.014 co t (a /2 )  

For physically interesting values of the velocity 13 (about 0.13) and scattering 
angle a (20-70 deg) the exponential term is essentially a constant. Only for 
very small angles is the exponent a rapidly varying function of/3. 
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The conclusion is that a purely classical model based on pointlike 
nuclei cannot explain the velocity peak, although it makes understandable 
the peculiar angular distribution of leptopions. 

4. INCLUSION OF QUANTUM MECHANICAL AND 
FINITE-SIZE EFFECTS 

The most obvious explanations for the failure of the previous model 
to predict the velocity peak are the following: 

(a) Quantum mechanical effects in the motion of nuclei have been 
ignored. 

(b) The finite size of the colliding nuclei has not been taken into 
account, although it certainly plays an important role in the collision for 
the values of the scattering angle and velocity considered. 

The physical idea behind the model to be presented is that the velocity 
peak is a diffraction effect resulting from the quantum mechanical wave 
nature of the colliding nuclei and from their finite size. 

If diffraction effects are important, one expects that the production 
amplitude contains a factor C which is essentially of the type 

C = sin(Pxbcr) 

Px = M•/3 sin a (23) 

bcr =- R1 + R2 

Here Px denotes the momentum component of the scattered nucleus in the 
direction of the impact parameter and bcr is the critical value of the impact 
parameter given by the sum of the nuclear radii. This quantity varies very 
rapidly with the collision velocity and changes from 1 to 0 when the relative 
change of fl is of the order of 10 -2. 

There are two observational indications that the diffraction picture 
might be correct. 

(a) The relative width of the velocity peak is indeed of the order of 
~fl / f l  ~--10 - 2  (Cowan et  al., 1986). 

(b) If the diffraction mechanism is the correct explanation for the peak, 
one expects the presence of the several peaks. Indeed, in the Th-Th system 
(Cowan et  al., 1986) two peaks at projectile energies 5.70 and 5.75 MeV per 
nucleon have been observed. 

I propose the following formulation to take into account quantum 
mechanical effects related to the finite size of the nuclei. Consider first the 
quantum mechanical description. 

(a) Directions orthogonal to the scattering plane are treated classically 
and only the coordinate corresponding to the direction of the impact 
parameter vector is treated quantum mechanically. 
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(b) To each value of the impact parameter b a different vacuum is 
associated: the vacuum expectation value of the leptopion field is given 
as the instanton density of the classical electromagnetic field associated 
with the classical nucleus-nucleus collision with this value of the impact 
parameter. 

(c) The states of the colliding nucleus are described quantum mechani- 
cally as generalized plane waves with momentum given by the projection 
of the momentum of the colliding nucleus to the direction of the impact 
parameter vector, 

]Px) = f e'P~b] b) | ]vac(P, b)) (24) 

Here b can have arbitrary values and the impact parameter is given as the 
absolute value of b. 

For the incoming nucleus the momentum component Px vanishes and 
for the elastically scattered nucleus it is given by the expression 

Px = M R f l  sin a (25) 
(d) The amplitude for the leptopion production is obtained as the 

scalar product of incoming and outgoing states, 

B(p) = J e'P, bA(p, b) db (26) 

Here A(P, b) denotes the amplitude of the purely classical model with fixed 
impact parameter, essentially the integral of the instanton density over 
spacetime for the classical collision with incoming momentum P and impact 
parameter Ib I. 

Consider now the problem of taking into account the finite size of the 
nuclei. 

If the value of the impact parameter is not considerably larger than 
the sum of the radii of the colliding nuclei, one must use in the collision 
region realistic charge distributions to calculate their contribution to the 
production amplitude. Since the value of the leptopion momentum typically 
corresponds to a de Broglie wavelength of order 10 -1~ m, the phase factor 
in the plane wave factor appearing in the integrand is essentially constant 
in this region and we obtain simply the integral of E. B over this region, 

U(p) ~- e 'p~'cm f E. Bd4x (27) 

Here Xcm denotes center-of-mass coordinate for the interaction region. E. B 
reduces to a total divergence and is expressible as an integral over the 
boundary of the interaction region. Therefore this term does not depend at 
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all on the details of the dynamics in the interaction region: only the 
boundaries of the interaction region contain the dependence on the 
dynamics of the collision, in particular on the value of the impact parameter 
of the collision. 

The simplest guess is that the contribution of the interaction region to 
U(p)  vanishes for small values of the impact parameter, since nuclei form 
a system resembling more closely a single, spherically symmetric nucleus 
rather than two separate nuclei. The corresponding electromagnetic field is 
a spherically symmetric Coulomb field and has vanishing instanton density. 
Since the fields in the spacetime outside the interaction region are weak, 
one expects that their contribution is small. As a consequence, the instanton 
term is expected to be vanishing in the lowest order approximation for 
values of the impact parameter smaller than its critical value. 

In this approximation the production amplitude is given by the 
expression 

r A---Aid- e~e~bA(p, b) db (28) 
J - b  

Aid denotes the amplitude on the limit of pointlike nuclei. In the integral 
there appears the amplitude A(P, b) associated with pointlike nuclei. 

The nice feature of the model is that one can explicitly evaluate the 
expression for Aid. This is due to the fact that A(P, b) is defined as an 
integral over kx and ky of the amplitude, which depends on the impact 
parameter only through the factor e ibk-~. Substitution of this expression 
eliminates kx and b integrations. The ky integration can be performed 
analytically (Appendix) and one obtains the following expression for A~d 
as a sum of two terms: 

Aid = C( U, + U~) (29) 

Here C is a multiplicative constant derivable from the general expression 
for the production amplitude. 

The explicit expression for the first term is given by 

U, = RE1 + iIM1 

RE1 2 = (PxPy -Px re~/2)/(re~ + imp) 

IM~ (_pxpy rel/2K~/2 1 / 2  2 �9 2 = -pxpyK1 )/(re~+lml) 
(30) 

rel = ( Pz - Po/ ~ )2 + P~ - ( Po/ ~Y )2-  2P,:Px 

iml = - 2 K  11/2py 

K, = P] + (po/~y) 2 
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The expression for the second term is given by 

U2 = RE2 + i lM2 

RE2 = -[(P~py -P~Pv)Py + Px re2/2]/(re 2+ im 2) 

IM2 = [-(Pxpy - pxpy) rez/2K~/2 +P~pyKt,/2]/(re2 + imp) 

re2= _(px_Po//3)2+(po//3y)2+Zpxp,, +py2 _p~2 

im2 = 2p>,K12/2 

K 2  = (Px  - - P o / / 3  2 2 2 ) +p~+P~-2p~P~ 

(31) 

When the momentum of the leptopion is in the scattering plane and 
the condition cos 0 -- vcm//3 is satisfied, U~ behaves as 1/P~ and is singular 
only for forward scattering of the colliding nucleus. 

Consider now the behavior of the diffraction term. The contribution 
of this term at the singularity is easy to evaluate since the dependence of 
the singular term on the impact parameter is exponential, 

U, = ( eAb"/ A + C.C) ln (X) /2  

A = iP~ - my1 sin ~//3y 

X = [(1 + s)l/2 + (1 - s)'/2]/[(1 + s) 1/2 - (1 - s )  1/2] 

(32) 

s = sin r 

To a good approximation, one can neglect the leptopion contribution 
in the expression for A and one obtains the following expression for the 
amplitude: 

U, = [sin( Pxbcr)/ Px] l n (X) /2  
(33) 

P~ = MR~3 sin a 

Note that this term vanishes in the limit of the infinite impact parameter, 
as it should, since Aid is nonsingular. 

In accordance with our expectations, the singular part of the production 
amplitude is indeed a rapidly oscillating function of/3. Note that the period 
of the variation depends on the scattering angle a. This might explain why 
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the peak has not been observed in some experiments (Cowan et al., 1986): 
the averaging of the production over scattering angles smoothes out the peak. 

The model predicts oscillatory behavior for the diffractive part of the 
production amplitude, but only one or two peaks have been observed and 
just at the critical velocity needed to overcome the Coulomb wall (Cowan 
et al., 1986). This might be understood by the following argument. 

(a) Finite-size effects need to be taken into account only for velocities 
for which nuclei classically have the possibility to touch each other. For 
smaller velocities one must use the quantum mechanical model with no 
cutoff in impact parameter and diffraction effects disappear. 

(b) For velocities greater than the critical velocity, nuclear interactions 
come into play. As a consequence, collisions are not plane collisions any- 
more and elasticity is lost. This implies that the value of the momentum 
component Px for the scattered nucleus is not determined by the scattering 
angle and collision velocity alone. One obtains a continuum of periods and 
the observed spectrum is averaged over different periodic spectra: no peaks 
are observed. Also, the average value of Px gets smaller, with the con- 
sequence that the averaged production probability decreases. 

5. BRIEF REVIEW OF TGD 

I have shown that anomalous e+e - production might be understood 
as resulting from the decay of bound states of color-excited leptons. The 
idea of colored leptons does not fit quite naturally into the standard 
unification scenarios. In topological geometro dynamics (Pitk~inen, 1981, 
1983, 1985, 1986a, b, 1988) this idea arises quite naturally, so that it is 
perhaps worth reviewing briefly the basic ideas of this unification scenario 
in order to understand how the idea of colored leptons emerges in this 
scenario. 

(a) Free particles correspond to 3-surfaces of some higher dimensional 
space H = M4• S. The 3-surfaces can have boundary components and 
elementary fermions correspond to boundary components (generalizing the 
idea that quarks reside at the ends of the hadronic string). In this manner 
one obtains a topological explanation for family replication phenomenon: 
various boundary topologies (sphere, torus, etc.) correspond to various 
fermion families, so that only electroweak and color quantum numbers 
remain to be understood in terms of the geometry of M 4 • S. 

(b) The choice H = M4x CP~ makes it possible to understand the 
electroweak and color quantum numbers in terms of CP2 geometry. Elec- 
troweak quantum numbers correspond to spin degrees of freedom of CP2 
and color quantum numbers to the isometrics of CP2. Baryon and lepton 
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numbers correspond to different chiralities of H-spinors and B and L are 
exactly conserved quantum numbers unless chiral symmetry breaking 
occurs. In the spirit of the Skyrme model (Zahed and Brown, 1986), we 
can also identify electroweak, color, and gravitational fields as quantities 
related to the induced geometry of the 4-surfaces representing spacetime. 

The isometry group of CP2 is SU(3) and is identified as the global 
color group. There are, however, strong reasons to expect that the central 
extension of local SU(3) acts as the (at least approximate) symmetry group 
of the theory. The main motivation for this expectation is that the configur- 
ation space of the theory is union of the spaces Map(X, H), the space of 
maps from X to H, where X is a 3-manifold with arbitrary, possibly singular, 
manifold topology. Each of the spaces Map(X, H) can be regarded as a 
coset space G / H  of two local gauge groups: 

G = Map(X, M 4 x SU(3)), H = Map(X, M 4 X SU(2) x U(1)) 

For ordinary finite-dimensional groups G and H the coset space G~ H 
allows a G-invariant metric. If this holds true also in the local case, one 
expects that local M 4 x SU(3) or rather its central extension acts as the (at 
least approximate) symmetry group of the theory. Also, the analogy with 
string models (Green et al., 1987) suggests strongly that physical states 
correspond to the central extension of this group, the Kac-Moody group 
(Kac, 1986). 

Physical states are expected to lie in the infinite-dimensional representa- 
tions of the 3-dimensional SU(3) Kac-Moody group. The "vacuum states" 
of these representations correspond to multiplets of the ordinary color group 
and therefore to ordinary elementary particles. The excited states are 
obtained by applying $U(3) Kac-Moody generators of these vacuum multi- 
plets. Since Kac-Moody generators form a color octet, one obtains the 
triality rule: all states in representation have the triality of the ground-state 
multiplet. There are two possibilities to obtain colored leptons. They belong 
either to (a) Kac-Moody multiplets with a singlet ground state and can be 
regarded as vibrational excitations of ordinary leptons, or (b) the most 
naturally octet, ground state of a new Kac-Moody representation. 

The naive expectation based on the properties of Kac-Moody rep- 
resentations in string models is that vibrational color excitations of leptons 
and quarks have masses of the order of the Planck mass. This would mean 
that colored light leptons more naturally correspond to the octet ground-state 
Kac-Moody representation. Of course, this does not exclude the possibility 
that light color confined states, leptomesons, of vibrational excitations of 
singlet ground states exist, although the excitations themselves have mass 
of order the Planck mass. 
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In the TGD picture leptomesons would correspond to 3-surfaces, 
perhaps stringlike objects (surfaces of type X 2 x S 2 c M 4 • CP2, where X 2 
is the minimal Surface in M 4 and S 2 a geodesic sphere in CP2), carrying 
leptonic quantum numbers and color excitation on the boundary com- 
ponents (ends of  the stringlike object). 

At this stage it is not possible to settle mathematically the question of 
whether this kind of state is indeed possible. There is, however, the intriguing 
possibility that heavy ion collisions make it possible to settle the question 
experimentally, contrary to the pessimistic belief that the nonpointlike 
nature of  particles can be revealed at Planck energies only. A whole spectro- 
scopy of  leptohadrons would signal the nonpointlike nature of the funda- 
mental objects! 

6. WHY HAS LEPTONIC COLOR NOT BEEN OBSERVED? 

The most obvious signal for leptonic color would be the existence of 
a sufficiently stable leptohadron. In order to explain the experimental 
absence of  leptohadrons, one must assume that they are sufficiently heavy 
to decay to ordinary color singlet leptons so that leptohadrons become 
sufficiently short lived. 

The fact that leptopions are bound states and not elementary particles 
implies that leptopion effects are not seen in anomalous magnetic moment 
of  electrons (Itzykson and Zuber, 1980). In Babbha scattering (Itzykson 
and Zuber, 1980) no effects should be seen, since leptopions are not bound 

s t a t e s  of e+e -, but their color excitations. Note that the models which 
explain anomalous e*e - production as the decay of  e ' e -  resonances in 
principle predict effects in Babbha scattering. 

Strong interactions between leptons and ordinary hadrons (or ordinary 
leptons) would be a signal for leptonic color, but are expected to be absent. 
The reason is that gluons couple to each other only states in the same 
representation of  a color group: gluons "measure"  the color charge of  the 
state in question. This means that  gluon emission cannot transform leptons 
corresponding to different vacuum Kac-Moody  color representations into 
each other. The result implies that ordinary leptons cannot interact strongly 
with hadrons or leptons. 

Leptopion production in hadronic strong interactions is an obvious 
signal for leptonic color. Unless this production is prohibited by some 
selection rule, it dominates over the ordinary pion production, since the 
mass of  the leptopion is so small. This kind of selection rule indeed exists. 

Consider first leptopion production in perturbative QCD. The simplest 
manner to produce teptopions would be through gluon emission. A virtual 
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gluon decays to two colored leptons; a second lepton emits a gluon and 
then combines with the second colored lepton to form a leptopion. 

To simplify the situation, we can treat gluons as particles in initial and 
final states. This diagram is essentially identical to the diagram describing 
the decay of a pion to two photons when one expresses the leptopion field 
as the divergence of a teptonic axial current. For two-photon decay of a 
pion the amplitude is proportional to the hadronic contribution to the axial 
current anomaly and is nonvanishing by the asymmetry of electric charges 
with respect to weak isospin. 

Now photons are only replaced with gluons and the amplitude is 
proportional to the contribution of gluons to the axial anomaly. Since 
gluonic coupling matrices are isospin symmetric (unlike photonic coupling 
matrices), this contribution vanishes, I believe that this result in fact holds 
to all orders in QCD perturbatio~ theory. 

A second manner to evaluate leptopion production is based on a 
nonperturbative approach using dual diagrams: in this approach production 
results as purely topological (splitting ofa  stringlike object). Now, however, 
the so-cafled OZt rule (Chew and Rosenzweig, 1976, 1978) forbids leptopion 
production: the OZI rule says that colored leptonic lines belonging to 
leptopions must originate from incoming or outcoming hadrons, which is 
impossible, since they do not contain colored leptons. 

Thus. it seems that the electromagnetic anomaly is the only possible 
source for teptopions There are two important constraints for the production 
of teptopions in strong electromagnetic fields. First, the scalar product E.  B 
must be large. Far from the source region this scalar product tends to vanish: 
cow, sider only the Coulomb field. Second, the region where E - B  has 
cor~iderable size capmet be too small compared with the leptopion de 
Brog!ie wave!e~gth (!arge when compared with the size of nuclei, for 
example). ~f this conditior~ does not hold, the plane wave appearing in the 
Fourier amplitude is essentially constant spatially and since the fields are 
approximateiy a~.atic, the Fourier component of E. B is expressible as a 
spatial divergence, which reduces to a surface integral over a surface far 
fi'om the source region. The resulting amplitude is small, since fields in a 
far region have essential!y vanishing E.  B. 

So it seems that static electromagnetic fields do not produce leptopions. 
Collisions of nuclei seem to be especially favorable for leptopion production, 
since E.  B is not only large, but produces a singularity in the production 
amplitude. 

Of course, the presence of strong classical electromagnetic fields is not 
necessary for leptopion production. In the collisions of charged particles 
a virtual photon can decay into two colored leptons: colored lepton 
emits a photon before the combination with the second colored lepton to 
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form a leptopion. In this case, however, the production rate is proportional 
to the third power of  the fine structure constant. The hope is that this is 
enough to make production small enough. 

APPENDIX. EVALUATION OF THE PRODUCTION AMPLITUDE 

A1. General Form of the Integral 

The amplitude for leptopion production with four-momentum 

P = (Po, P) = m7~(l, v sin 0 cos ~b, v sin 0 sin ~b, v cos 0) 

y, = 1/(1 - v2) '/2 (A1) 

is essentially the Fourier component  of  the instanton density 

U(p)  = f e~P'~E �9 B d4x (A2) 

associated with the electromagnetic field of  the colliding nuclei. 
Coordinates are chosen so that the target nucleus is at rest at the origin 

of  coordinates and the colliding nucleus moves along the positive z direction 
in the y = 0 plane with velocity ft. The orbit is approximated with a straight 
line with impact parameter b (Figure t). 

The instanton density is just the scalar product  of the static electric 
field E of  the target nucleus and the magnetic field B, the magnetic field 
associated with the colliding nucleus (Figure 2), which is obtained by 
boosting the Coulomb field of the static nucleus to velocity ft. The flux lines 
of  the magnetic field rotate around the direction of  the velocity of  the 
colliding nucleus so that the instanton density is indeed nonvanishing. 

Z 

f 

Y 

Fig. 1. The coordinates used to describe a nucleus-nucleus collision. 
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• 

Fig.  2. Topology of the field lines for the electric field of  the stationary nucleus and magnetic 
field of  the colliding nucleus.  

The Fourier transforms of E and B are given by the expressions 

E,( k ) = rS( ko) ki/ k 2 
(A3) 

Bi( k ) = 8( 7( ko-  jSkz) )k;euz eGb/[ ( k J  3,)2 + k2T] 

The Fourier transform of the instanton density can be expressed as a 
convolution of the Fourier transforms of E and/3,  

U(p) = f E ( p - k )  . B(k)  d4k (A4) 

In the convolution the presence of two delta functions makes it possible to 
integrate over ko and kz and the expression for U reduces to a twofold 
integral, 

U(p) = ~'), f dkx dky (kxpy - kypx)/AB 

A = (Pz -Po//3)2 +p2T + k2T--2kr "PT 
(AS) 

B = k 2 q  - ( p o / ] 3 ' y )  2 

pT=(p,~,p,,) 

To carry out the remaining integrations, one can apply residue calculus. 
(a) The k r integral is expressed as a sum of two-pole contributions. 
(b) The k~ integral is expressed as a sum of two-pole contributions 

plus two cut contributions. 
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A2. k~. Integration 

Integration o v e r  ky can be performed by completing the integra- 
tion contour along the real axis to a half-circle in the upper  half-plane 
(Figure 4). 

The poles of  the integrand come from the two factors A and B in the 
denominator  and are given by the expressions 

- i [ k ~  + (po//3y) 2] ~/2 k y -  
(A6) 

k~ = py + i[ ( pz - po/ ~ )2 + p~ + k~ - 2pxkx] '/2 

One obtains for the ampli tude an expression as a sum of two terms, 

U = f eGb( U1 + Uz) dkx (A7) 

corresponding to two poles in the upper  half-plane. 
The explicit expression for the first term is given by 

Ul = RE1 + ilM1 

RE1 = (kxp2y -Px re~/2)/(re~ + imP) 

IM~ = (-kxpy rel/ 2K ~/2- pxPyK l/2) / (re 2 + im~) 
(A8) 

rel = ( Pz -- Po/ ~ )2 + P 2r - ( Po/  fl'Y ) 2 - 2p~k~ 

ira1 = -2Kl/2py 

K~ = k~ + (po/~y) 2 

The expression for the second term is given by 

�9 U2 = RE2 + iIM2 

RE~ = -[(k~py -pxpy)py +Px re2/2]/(re~ + imp) 

IM2 = [ - (  kxpy - p~py ) re2/ 2K 1/2 + p~pyK ~/2]/ (re~ + im2 2) 
(A9) 

re2 = - (  p.. -- po /  fl  ) 2 + ( po /  f13/ ) 2 + 2 pxkx + p 2 _ p2 

ira2 = 2pyK~/2 

K2 = (Pz --Po/ fl ) 2 + P 2x + k~ - 2p~k~ 

r 

Fig. 3. Evaluation of k. integral using residue calculus. 
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A3. k. Integration 

One cannot perform the kx integration completely using the residue 
calculus. The reason is that the terms IMI and IM2 have cuts in the complex 
plane. One can, however, reduce the integral to a sum of  pole terms plus 
integrals over the cuts (Figure 4). 

The poles of U1 and U2 come from the denominators and are in fact 
common for the two integrands. The explicit expressions for the poles 
in the upper half-plane where the integrand converges exponentially are 
given by 

re~+im2=0,  i = 1 , 2  

kx = [ - b  + i ( - b  2 + 4ac)~/2]/2a 

a = 4p~- (A10) 

b = -4[ (pz  - p o / f l ) 2 + p ~ -  (po/fl'y)2]px 

c = [(p,  - p o / B ) 2 + p  2 -  (po / fT)2]2+4(po/ fy )2p  2 

The cuts associated with Ux and /-/2 come from the square root terms K1 
and / (2 .  The condition for the appearence of the cut is that K1 (K2) is real 
and positive. In the case of  Kl this condition gives 

kx = it, t ~ (0, Po/flY) (A11) 

In the case of  K2 the same condition gives 

kx=px+i t ,  tc(O, p o / f - p z )  (A12) 

Both cuts are in the direction of the imaginary axis. 
The integral over the real axis can be completed into an integral over 

a semicircle and this integral in turn can be expressed as a sum of three 

2 I 2 
R---> oo 

R ---~ oo 

Fig. 4. Reduction of k~ integral to pole and cut terms using residue calculus. 
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Fig. 5. Kinematically allowed configurations in the singularity of the production amplitude. 
The leptopion momentum is in the scattering plane and its velocity is a function of the scattering 
angle given by the condition cos 0 = 2v/I(1 + vz)B]. 

te rms (Figure  5), 

U = RES+ CUT1 + CUT2 (A13) 

The  first t e rm cor responds  to a con tour  which avoids the cuts and  reduces  
to a sum o f  pole  contr ibut ions.  The second te rm cor responds  to the addi t ion  
o f  cut contr ibut ions.  

In  the fol lowing I give the express ions  o f  var ious  terms in the region 
~b ~ [0, zr/2].  Using the symmetr ies  

A(px, -py) = -A(ex ,  py)  
(A14) 

A(-px,  -py) = A(Px, Py) 

o f  the ampl i tude ,  one can  calculate  the ampl i tude  for  other  values o f  ~b. 
By a tedious  but  s t ra ight forward  calcula t ion one finds that  the contr ibu-  

t ion o f  the poles  to the ampl i tude  is given by  the express ion  

RES = [ i t  sin 0 c o s  fbr /2(w2"k  - r 2 sin 2 0) l/z] 

x e~kr{sin 0 sin & - i[1 + (kfly)2] ~/2 

+ [ w ~ + ( k - v  sin 0 cos ~b)2] '/2} (A15) 

Here  the definit ions o f  var ious  auxil iary var iables  are 

w = l - r c o s  0 

= 2 / ( 1  -/32) '/~ 

r = V c m / f l  

vo,,,=2v/(l+v 2) 

T =bmy, 

(A16) 
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The integration variable for cuts is the imaginary part  t of  kx. To get 
a more convenient form for cut integrals, one can perform a change of  the 
integration variable 

cos ~b = t/(po/fl3") 

cos ~b = t / (po/ f l  -Pz)  (A17) 

q~ ~ [0, z ' /2]  

By a painstaking calculation one verifies that the expression for the contribu- 
tion of the first cut is given by 

f 
~r/2 

CUT~ = sin 0 sin r b A dq~/2 
dO 

A = e - r~~  0 cos 4~+ iK cos ~) /X1 

X~ = sin 2 0(sin 2 4~ - c o s  2 ~)+ K 2 -  2iK sin 0 cos ~ cos 4~ 

K =/33,(1 - Yore cos 0/[3) (A18) 

/ ) cm = 2v/(1 + v 2) 

T = bm3,1//33, 

The definitions of  the various auxiliary variables are given in previous 
formulas. 

The denominator  X~ vanishes when the conditions 

COS 0 = f l / / )cm 
(A19) 

sin ~b = cos q, 

hold. In the forward direction the conditions express the vanishing of  the 
z component  of  the leptopion velocity in the velocity cm frame, as one can 
easily realize by noticing that the conditions reduce to the condition v = [3/2 
in the nonrelativistic limit. 

It turns out that the contribution of the first cut in fact diverges in the 
limit ~b = 0, which corresponds to the production of  leptopions with momen-  
tum in the scattering plane and with direction angle cos 0 = [3//)crn. 

The contribution of  the second cut is given by the expression 

r rr/2 
C U T  2 --- ( u  sin 0 sin ~p/2)e irvsi"~176 A d o 

dO 

A = e - r  . . . .  z/O[sin 0 cos qbu 

+ i cos ~b[w/Vcm+ (v/ f l )  sin 2 0(sin 2 ~b - c o s  2 ~b)]]/X2 (A20) 
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The r ema in ing  auxi l iary variables are defined as 

X2 = s i n  2 0[sin 2 q ~ / 7 2 -  u 2 cos 2 

+/32(v 2 sin 2 0 - 2 v w / v ~ )  cos~O] (W/V~m) ~ 
(A21) 

+2iu[3(v  sin 2 0 cos q~ - w  cos ~ p / v ~ )  sin 0 cos 

u = 1 - / 3 v  cos 0 

The d e n o m i n a t o r  322 has no  poles and  the con t r ibu t ion  of the second cut 
is therefore finite. 
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